При установке суррогатных и невидимых антенн, размещаемых стационарно, или временно эксплуатируемых в помещении, обычно возникают трудности с их настройкой в резонанс. Поскольку эти антенны как правило располагаются в окружении проводящих предметов, их реальная резонансная частота , по сравнению с их теоретически расчетной, сдвигается вниз, и необходима их настройка непосредственно в месте установки. Проволочные суррогатные антенны особенно подвержены как расстройке под действием близко расположенных проводящих предметов, так и при приближении к ним человека, вследствие чего их резонансная частота значительно меняется.
В результате такие антенны, установленные скрытно в помещении, часто работают неудовлетворительно. Поэтому при установке одного типа суррогатной антенны в разных помещениях, возникают трудности с её настройкой.
Для уменьшения влияния вышеуказанных дестабилизирующих факторов на резонансную частоту и работу антенны, в качестве суррогатных невидимых антенн можно использовать широкополосные несимметричные вибраторы. Были испытаны ленточные несимметричные вертикальные антенны, выполненные из алюминиевой пищевой фольги.
На одну сторону фольги был наклеен скотч шириной 10 см. Антенна крепится на стене комнаты при помощи канцелярских кнопок. В качестве земли используется полоса такой же фольги длиной 5 метров, установленная на плинтусе комнаты. Внешний вид такой антенны показан на рисунке 1. Для работы антенны в диапазоне 21 МГц длина L первоначально была выбрана 3,5 метра.
При исследовании входного сопротивления антенны с помощью высокочастотного моста, оказалось, что эта антенна имеет резонанс на частоте 19,2 МГц, при том её входное сопротивление было равно 38 Ом. Второй резонанс антенны был на частоте 26,4 МГц, на этой частоте входное сопротивление антенны было равно 350 Ом.
Для настройки антенны на диапазон 21 МГц её верхняя часть была смотана в трубочку, как показано на рисунке 2. При длине L равной 3,1 м, резонансная частота антенны была равна 21,1 МГц, при её входном сопротивлении 39 Ом, вторая резонансная частота была равна 28,1 МГц при входном сопротивлении антенны 350 Ом.
При размещении антенны в комнате в различных условиях — на стене комнаты, около проводящих предметов, в свободном пространстве, её резонансная частота менялась незначительно. Это показывает, что ленточную антенну можно устанавливать в разных помещениях с различной, окружающей антенну, обстановкой. При этом требуется минимальная настройка в резонанс применительно к окружающей обстановке.
Питать антенну диапазона 21/28 МГц лучше всего через двухпроводную линию волновым сопротивлением равным 130-160 Ом и электрической длиной равной >74 на диапазоне 28 МГц. В качестве такой линии годится сетевой шнур питания с тонкими жилами. Волновое сопротивление шнура легко определить следующим образом.
Отрезок шнура длиной не менее 1 метра, разомкнутый на конце, подключают к RLC-метру, и измеряют емкость жил относительно друг друга. Затем жилы на конце кабеля закорачивают, и измеряют полученную индуктивность линии. Зная емкость и индуктивность находят волновое сопротивление суррогатной линии передачи из известной формулы:
Z=V(L/C)
где Z - волновое сопротивление линии (Ом), L - индуктивность линии (Генри), С - емкость линии (Фарад). Эта методика позволяет определить волновое сопротивлении линии с достаточной, для радиолюбительской практики, точностью. Получается весьма неплохое согласование антенны при её работе на диапазонах 21 и 28 МГц, и к тому же, антенну можно подключить к трансиверу с выходным каскадом на 50-75 Ом без какого-либо согласующего устройства.
Настройку ленточной антенны в резонанс, при её расположении в конкретных условиях, легко осуществлять путем свертывания полотна антенны. При уменьшении длины антенны до 1,9 метра можно получить первый резонанс в диапазоне 28 МГц, при её входном сопротивлении 36 Ом. Это дает возможность питать антенну по коаксиальному кабелю волновым сопротивлением 50 Ом, а при смене диапазона оперативно настраивать антенну на рабочий диапазон путем изменения её длины.
Как показала практика, более рационально использовать для работы на диапазоне 28 МГц антенну длиной 3,1 метра. В этом случае сила принимаемых сигналов при переходе с ленточной антенны длиной 1,9 м на ленточную антенну длиной 3,1 м сила сигналов возрастала на 1-1,5 балла.
Свертыванием полотна ленточные антенны можно настроить на более высокую резонансную частоту. При необходимости настроить антенну на длину волны ниже резонансной частоты антенны это можно сделать вырезом части фольги так, чтобы полотно антенны представляло собой вид катушки индуктивности, как это показано на рисунке 3.
В моем случае, антенна показанная на этом рисунке, имела резонансную частоту 18,1 МГц. Её входное сопротивление было равно 38 Ом, что практически приближается к теоретическому входному сопротивлению вертикальной несимметричной четвертьволновой антенны. Количество полос катушки п на длине 60 см было равно 14-ти. Вторая резонансная частота антенны получается 25,2 МГц при входном сопротивлении 350 Ом.
Такая антенна хорошо работает на диапазонах 18 и 25 МГц. Для её питания при работе на обоих диапазонах целесообразно приме-нить двухпроводную линию длиной, равной >74 на диапазоне 25 МГц и волновым сопротивлением 130-160 Ом, как это было сделано выше.
Ширина резонансной полосы антенн, показанных на рисунках 1-3, при изменении входного сопротивления антенны на величину, равную 2, была не менее 1,2 МГц на тех диапазонах, где антенна имела низкое входное сопротивление, и не менее 1 МГц на диапазонах, где антенна имеет высокое входное сопротивление.